A transverse wave is described by the equation $y = {y_0}\,\sin \,2\pi \,\left[ {ft - \frac{x}{\lambda }} \right]$ . The maximum particle velocity is equal to four times the wave velocity if

  • A

    $\lambda \, = \,\frac{{\pi {y_0}}}{4}$

  • B

    $\lambda \, = \,\frac{{\pi {y_0}}}{2}$

  • C

    $\lambda \, = \,\pi {y_0}$

  • D

    $\lambda \, = \,2\pi {y_0}$

Similar Questions

Two pipes are each $50\,cm$ in length. One of them is closed at one end while the other is  both ends. The speed of sound in air is $340\,ms^{-1}.$ The frequency at which both the pipes can resonate is

Figure shows the wave $y = A\,sin\,(\omega t -kx)$ .What is the magnitude of slope of the curved at $B$

A set of $24$ tunning fork is arranged in a series of increasing frequencies. If each fork gives $4\, beats/second$ with the preceeding one and frequency of last tunning fork is two times of first fork. Find frequency of $5^{th}$ tunning fork  .... $Hz$

A man is watching two trains, one leaving and the other coming with equal speed of $4\,m/s$ . If they sound their whistles each of frequency $240\, Hz$ , the number of beats per sec heard by man will be equal to: (velocity of sound in air $= 320\, m/s$ )

A massless rod is suspended by two identical strings $AB$ and $CD$ of equal length. A block of mass $m$ is suspended from point $ O $ such that $BO$ is equal to $’x’$. Further, it is observed that the frequency of $1^{st}$ harmonic (fundamental frequency) in $AB$ is equal to $2^{nd}$ harmonic frequency in $CD$. Then, length of $BO$ is